Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: covidwho-2010309

ABSTRACT

Porcine viral diarrhea diseases affect the swine industry, resulting in significant economic losses. Porcine epidemic diarrhea virus (PEDV) genotypes G1 and G2, and groups A and C of the porcine rotavirus, are major etiological agents of severe gastroenteritis and profuse diarrhea, particularly among piglets, with mortality rates of up to 100%. Based on the high prevalence rate and frequent co-infection of PEDV, RVA, and RVC, close monitoring is necessary to avoid greater economic losses. We have developed a multiplex TaqMan probe-based real-time PCR for the rapid simultaneous detection and differentiation of PEDV subtypes G1 and G2, RVA, and RVC. This test is highly sensitive, as the detection limits were 20 and 100 copies/µL for the G1 and G2 subtypes of PEDV, respectively, and 50 copies/µL for RVA and RVC, respectively. Eighty-eight swine clinical samples were used to evaluate this new test. The results were 100% in concordance with the standard methods. Since reassortment between porcine and human rotaviruses has been reported, this multiplex test not only provides a basis for the management of swine diarrheal viruses, but also has the potential to impact public health as well.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Rotavirus , Swine Diseases , Animals , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Rotavirus/genetics , Rotavirus/isolation & purification , Sensitivity and Specificity , Swine , Swine Diseases/virology
2.
Cell Rep ; 39(11): 110969, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1866960

ABSTRACT

Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.


Subject(s)
COVID-19 , Chiroptera , Filoviridae , Henipavirus , Rotavirus , Viruses , Animals , Filoviridae/genetics , Humans , Rotavirus/genetics , SARS-CoV-2/genetics
3.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1594013

ABSTRACT

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Subject(s)
Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , China , Pandemics , Phylogeny , Phylogeography , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/epidemiology , United States
4.
Pathogens ; 10(10)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1480900

ABSTRACT

Cats are susceptible to a wide range of influenza A viruses (IAV). Furthermore, cats can serve as an intermediate host, and transfer avian influenza virus (AIV) H7N2 to a veterinarian. In this report, a novel reassortant influenza virus, designated A/feline/Jiangsu/HWT/2017 (H3N2), and abbreviated as FIV-HWT-2017, was isolated from nasal swab of a symptomatic cat in Jiangsu province, China. Sequence analysis indicated that, whilst the other seven genes were most similar to the avian-origin canine influenza viruses (CIV H3N2) isolated in China, the NS gene was more closely related to the circulating human influenza virus (H3N2) in the region. Therefore, FIV-HWT-2017 is a reassortant virus. In addition, some mutations were identified, and they were similar to a distinctive CIV H3N2 clade. Whether these cats were infected with the reassortant virus was unknown, however, this random isolation of a reassortant virus indicated that domestic or stray cats were "mixing vessel" for IAV cannot be ruled out. An enhanced surveillance for novel influenza virus should include pet and stray cats.

5.
Trends Mol Med ; 26(5): 483-495, 2020 05.
Article in English | MEDLINE | ID: covidwho-11922

ABSTRACT

The recent outbreak of COVID-19 in Wuhan turned into a public health emergency of international concern. With no antiviral drugs nor vaccines, and the presence of carriers without obvious symptoms, traditional public health intervention measures are significantly less effective. Here, we report the epidemiological and virological characteristics of the COVID-19 outbreak. Originated in bats, 2019-nCoV/ severe acute respiratory syndrome coronavirus (SARS-CoV)-2 likely experienced adaptive evolution in intermediate hosts before transfer to humans at a concentrated source of transmission. Similarities of receptor sequence binding to 2019-nCoV between humans and animals suggest a low species barrier for transmission of the virus to farm animals. We propose, based on the One Health model, that veterinarians and animal specialists should be involved in a cross-disciplinary collaboration in the fight against this epidemic.


Subject(s)
Betacoronavirus , Coronavirus Infections/veterinary , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Animals , Betacoronavirus/genetics , COVID-19 , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Interdisciplinary Communication , Pandemics , Pneumonia, Viral/transmission , Receptors, Virus/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL